Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Qi Song, Frank R. Fronczek* and Nikolaus H. Fischert

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

+ Current address: Department of Pharma-
cognosy, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA

Correspondence e-mail:
fronz@chxray.chem.Isu.edu

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.061$
$w R$ factor $=0.166$
Data-to-parameter ratio $=11.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Denudatin A, a neolignan from Magnolia soulangiana

In the title compound, $(2 S, 3 R, 3 \mathrm{a} R)$-2-(1,3-benzodioxol-5-yl)-3,3a-dihydro-3a-methoxy-3-methyl-5-(2-propenyl)-6(2H)benzofuranone, $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5}$, the furan ring has a half-chair conformation with its O atom on the twist axis. The semiquinone ring is slightly non-planar, with a maximum deviation of 0.065 (3) A.

Comment

The title neolignan, (I), has previously been reported from Magnolia denudata (Iida et al., 1982; Kuroyanagi et al., 2000), Magnolia liliflora (Iida \& Ito, 1983) and Magnolia soulangiana (Abdallah, 1993).

(I)

The furan ring has a half-chair conformation with its O atom on the twist axis, as shown by the torsion angles in Table 1 . The semiquinone ring is only slightly non-planar, with its six C atoms exhibiting an r.m.s. deviation of $0.039 \AA$ from coplanarity, with a maximum deviation of 0.065 (3) A. The propenyl group is twisted out of the semiquinone-ring plane primarily by rotation about the $\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}$ bond, as indicated by the $\mathrm{C} 1^{\prime}-\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}-\mathrm{C} 9^{\prime}$ torsion angle of $-125.4(4)^{\circ}$.

The most closely related neolignan for which the crystal structure has been previously reported is mirandin- A (Tomita, et al., 1977), which differs from the title compound, (I), in having the opposite configuration at C^{\prime} and by having a $3,4,5-$ trimethoxyphenyl substituent rather than the 3,4-methylenedioxyphenyl group of denudatin A. In mirandin- A, the furan ring also has a twist conformation, but with C 7 on the twist axis. Its propenyl group also has a different conformation, with a $\mathrm{C}^{\prime}-\mathrm{C1}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$ torsion angle of -92.7° and a $\mathrm{Cl}^{\prime}-$ $\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}-\mathrm{C} 9^{\prime}$ torsion angle of 2.0°.

Experimental

Leaves of Magnolia soulangiana, collected in Vancouver, BC, Canada, were air dried, ground and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 24 h . The crude extract was separated by standard vacuum liquid chromatography procedures (Cantrell et al., 1996),

Received 11 October 2001
Accepted 19 October 2001
Online 27 October 2001

Figure 1
The atom-numbering scheme for (I) with ellipsoids at the 40% probability level.
using silica gel and n-hexane/ethyl acetate mixtures of increasing polarity. Fractions 63-66 (of 66) yielded crystals of denudatin A.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5}$
$M_{r}=340.36$
Monoclinic, $C 2$
$a=17.8678(17) \AA$
$b=6.7905(18) \AA$
$c=16.382(2) \AA$
$\beta=120.114(10)^{\circ}$
$V=1719.4(5) \AA^{3}$
$Z=4$
$D_{x}=1.315 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=10.2-23.4^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, colorless
$0.45 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection
Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none 3590 measured reflections 2619 independent reflections 1813 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.056$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.166$
$S=1.04$
2619 reflections
228 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 3-\mathrm{C}^{\prime}$	$1.233(5)$	$\mathrm{C} 3^{\prime}-\mathrm{C}^{\prime}$	$1.322(5)$
$\mathrm{C} 1^{\prime}-\mathrm{C}^{\prime}$	$1.333(5)$	$\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$1.312(7)$
$\mathrm{C} 4^{\prime}-\mathrm{O} 4-\mathrm{C} 7$	$108.7(3)$	$\mathrm{C} 9^{\prime}-\mathrm{C} 8^{\prime}-\mathrm{C} 7^{\prime}$	$123.7(5)$
$\mathrm{C} 4^{\prime}-\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 8$	$14.1(4)$	$\mathrm{O} 4-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{C} 8$	$-36.9(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 4$	$-45.0(4)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 5^{\prime}-\mathrm{C} 4^{\prime}$	$42.3(3)$
$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 5^{\prime}$	$-35.7(3)$	$\mathrm{C} 6^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}$	$4.3(6)$
$\mathrm{C} 7-\mathrm{O} 4-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$	$14.5(4)$	$\mathrm{C} 1^{\prime}-\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}-\mathrm{C} 9^{\prime}$	$-125.4(4)$
$\mathrm{C} 10^{\prime}-\mathrm{O} 5-\mathrm{C} 5^{\prime}-\mathrm{C} 4^{\prime}$	$57.6(4)$		

The absolute configuration could not be determined. H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}$ bond distances in the range $0.95-1.00 \AA$ and thereafter treated as riding. A torsional parameter was refined for each methyl group. $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the attached atom (1.5 for methyl groups).

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MAXUS (Mackay et al., 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The purchase of the diffractometer was made possible by a National Science Foundation chemical instrumentation grant, which we gratefully acknowledge. Improvements to the LSU X-ray Crystallography Facility were supported by Grant No. LEQSF(1996-97)-ESH-TR-10, administered by the Louisiana Board of Regents.

References

Abdallah, O. M. (1993). Phytochemistry, 34, 1185-1187.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Cantrell, C. L., Lu, T., Fronczek, F. R., Fischer, N. H., Adams, L. B. \& Franzblau, S. G. (1996). J. Nat. Prod. 59, 1131-1136.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Iida, T., Ichino, K. \& Ito, K. (1982). Phytochemistry, 21, 2939-2941.
Iida, T. \& Ito, K. (1983). Phytochemistry, 22, 763-766.
Kuroyanagi, M., Yoshida, K., Yamamoto, A. \& Miwa, M. (2000). Chem. Pharm. Bull. 48, 832-837.
Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. \& Shankland, K. (1999). MAXUS. Nonius, The Netherlands, MacScience, Japan, and The University of Glasgow, Scotland.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tomita, K., Rosenstein, R. D. \& Jeffrey, G. A. (1977). Acta Cryst. B33, 26782680.

